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Coefficient of restitution for elastic disks

Franz Gerl and Annette Zippelius
Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 6 August 1998!

We compute the coefficient of restitutione starting from a microscopic model of elastic disks. Collisions are
found to be inelastic, in general, with a finite fraction of translational energy being transferred to elastic
vibrations. The coefficient of restitution depends on the relative velocity of the colliding disks, such that
collisions become increasingly more inelastic for larger relative velocities. The predictions of the model are in
agreement with the approach of Hertz@J. Reine Angew. Math.92, 156 ~1882!# in the quasistatic limit. The
coefficient of restitution depends on the elastic constants of the material via Poisson’s number. The elastic
vibrations absorb kinetic energy more effectively for soft materials with low ratios of shear to bulk modulus.
@S1063-651X~99!05202-2#

PACS number~s!: 46.40.2f, 62.30.1d, 83.70.Fn
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I. INTRODUCTION

The most important characteristic of granular media is
inelastic nature of the interparticle collisions. The remova
kinetic energy in a granular gas is responsible for noneq
librium phenomena that are of theoretical and experime
interest. In computer simulations of granular matter, this
ergy loss is usually treated in a very simplified way. In eve
driven simulations@1#, a fixed coefficient of restitution is
used, i.e., after each interparticle collision a certain fract
of the energy involved is lost. In experiment@2#, the coeffi-
cient of restitution is found to depend on velocity. Wh
using molecular dynamics techniques@3#, ad hocphenom-
enological assumptions for the intergrain force laws are
troduced.~For a recent review, see Ref.@4#.!

Several microscopic mechanisms for the decay of kin
energy during collisions have been discussed. Perma
plastic deformation of granular particles has been propo
as a possible mechanism for the removal of kinetic ene
@5#. Viscoelastic behavior was used to extend the theory
Hertz @6# to inelastic impact. One either invokes a pheno
enological damping term in the equations of motion@7# or
uses a quasistatic approximation for low relative impact
locities @8#.

More recently temporary storage of energy in elas
modes@9,10# has been discussed for one-dimensional ro
During collisions, energy is exchanged between translatio
motion and internal degrees of freedom, whereas in betw
collisions the energy stored in the elastic modes decay
the collision rate is high enough, which is frequently o
served in simulations as a precursor for inelastic collap
elastic energy may be transformed back into kinetic ene
Thereby inelastic collapse is avoided, and a rich dynamic
temporary clusters is observed, including breakup and re
mation of clusters as well as relaxation to a final state w
all particles in contact@11#.

The quantity controlling the fraction of kinetic energ
which is lost in a collision, is the coefficient of restitutione.
We will restrict ourselves to head-on, normal collision
wheree is simply defined as the ratio of relative velocitie
after and before collision:
PRE 591063-651X/99/59~2!/2361~12!/$15.00
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For perfectly elasticone-dimensionalrods, phenomenologi-
cal wave theory yieldse5 l 1 / l 2 , independent of the relative
velocity of the colliding rods. Herel 1 ( l 2) denotes the
length of the shorter~longer! rod. If both rods are identical
we havee51 always. Using the approach of Hertz, Raylei
@12# estimated that the fraction of energy stored in the fu
damental mode for two slowly colliding spheres is abo
0.02v i /c ~where c is the velocity of sound in a one
dimensional rod of the same material!. While being quite
small for many realistic scenarios, his value for the coe
cient of restitution thus depends on velocity and does
vanish for identical spheres.

In this paper we shall analyze collisions of two
dimensional elastic disks. Starting from three-dimensio
elastic objects, the two-dimensional case can be realize
two ways, called plane stress and plane strain@13#. Plane
stress describes the situation of thin plates, where the s
components on the faces of the plates disappear. With
additional assumption of in-plane oscillations only, the eq
tions of two-dimensional elasticity apply. In the case
plane strain the end sections of a prismatic body are confi
between smooth rigid planes, so that displacements in
axial direction are prevented. If the forces do not vary alo
the length for symmetry reasons, it may be assumed
there is no axial displacement anywhere. This again redu
the problem to two dimensions. It is easy to show that
equations for plane strain are the same as those for p
stress, provided one makes the substitutions

E→
E

12n2
, n→

n

12n
, ~2!

whereE denotes Young’s modulus andn Poisson’s number.
For plane stress Poisson’s numbern has the three-
dimensional value, and hence is restricted to21<n< 1

2 .
With the above transformation this corresponds to2 1

2 <n
<1 for plane strain. In particular values ofn close to 1 can
be achieved for plane strain by materials with low she
modulusm, like rubber.
2361 ©1999 The American Physical Society
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As in our previous work for one-dimensional elastic ro
@9,10#, we model the transfer of translational energy to el
tic vibrations of two-dimensional disks, and discuss the c
lision between two identical disks or equivalently the co
sion of one disk with a rigid wall. The interaction is modele
by a hard core potential depending on the instantane
separation between the two disks. In contrast to the o
dimensional case, the equations of motion for the elastic
brations have to be solved numerically. The main result
our paper is the coefficient of restitution as a function
initial relative velocity and elastic properties of the disks,
shown in Fig. 1. Collisions are found to be elastic for va
ishing relative velocity in agreement with Hertz’ quasista
approach@6#, and become increasingly inelastic for increa
ing relative velocity. For soft matter, characterized by
small value of the shear modulus, the elastic modes pro
a rather effective mechanism for the uptake of kinetic ene
during collision, so that the coefficient of restitution d
creases with decreasing shear modulus. In contrast to
dimension, where the collision of two rods of equal length
always perfectly elastic@10#, we find that the collision be-
tween two identical disks is in general inelastic.

Our paper is organized as follows. In Sec. II we discu
two-dimensional elasticity and calculate the eigenmodes
disk with force free boundaries. In Sec. III we analyze t
equations of motion of an elastic disk, colliding with a ha
wall. The numerical solution of the equations of motion a
discussed in Sec. IV. In Sec. V we apply Hertz’ and Ra
leigh’s methods to two dimensions to study the limiting ca
of very small relative velocities, i.e., the quasistatic limit. W
conclude with a summary of our results and an outlook.

II. ELASTIC EXTENSIONAL MODES OF DISKS

A. Elasticity of planar bodies

We briefly review the theory of linear elasticity in tw
dimensions, as discussed, e.g., by Love@14#, Landau and
Lifshitz @15# or Timoshenko and Goodier@13#. We consider
small displacementsu(x) and expand the free energy up
quadratic order in the strain field, which is defined as
symmetrized derivative of the displacement vector:

FIG. 1. Coefficient of restitutione as a function of initial veloc-
ity for n50.33 andn50.9. Herev i denotes the initial relative ve
locity, expressed in units ofc5AE/r51 ~see below!.
-
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e i j 5
1

2S ]ui

]xj
1

]uj

]xi
D . ~3!

An isotropic elastic body has only two independent elas
constants, the shear modulusm and the compressional modu
lus K. In terms of these the elastic free energy is given b

Eelas5E d2x@m~e i j 2d i j e l l /2!21Ke l l
2 /2#. ~4!

The notation implies summation over indices which app
twice. The stress tensor is defined as the derivative of
elastic free energy with respect to the strain field, and
explicitly given by

s i j 5
dEelas

de i j
52m~e i j 2d i j e l l /2!1Kd i j e l l . ~5!

It is sometimes convenient to introduce Young’s modulusE
and Poisson’s numbern instead of the moduli of torsion an
compression. These quantities are simply related—in two
mensions we haveE5(4mK)/(K1m) and n5(K2m)/(K
1m)—so that alternatively to Eq.~5! we may use

s i j 5
E

~12n2!
@~12n!e i j 1nd i j e l l #. ~6!

In the absence of body forces the equations of equilibri
read

]s i j

]xj
50. ~7!

B. Normal modes

In the following we shall discuss the eigenmodes of
circular disc with force free boundaries~see also Ref.@14#!.
Our starting point are the linear equations of motion@15#

Luª
11n

2
¹~¹•u!1

12n

2
Du5

%~12n2!

E

]2u

]t2
, ~8!

wherer is the mass per unit area. The differential operatoL
is Hermitian for force free boundary conditions, as shown
the Appendix. To solve the coupled differential equations
ux anduy , we introduce the areal dilatationh and rotationz

h5
]ux

]x
1

]uy

]y
, 2z5

]uy

]x
2

]ux

]y
. ~9!

The equations of vibration~8! then simplify to

]h

]x
2~12n!

]z

]y
5

r~12n2!

E

]2ux

]t2
, ~10!

]h

]y
1~12n!

]z

]x
5

r~12n2!

E

]2uy

]t2
. ~11!

Differentiating Eq.~10! with respect tox, Eq. ~11! with re-
spect toy, and adding them yields
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¹2h5
r~12n2!

E

]2h

]2t
. ~12!

Differentiating Eq.~10! with respect toy, Eq. ~11! with re-
spect tox, and subtracting them gives

¹2z5
2r~11n!

E

]2z

]2t
. ~13!

Hence the equations of two-dimensional elasticity have b
reduced to two scalar wave equations which are coup
through the boundary conditions.

To discuss the eigenmodes of a circular disk, we use p
coordinatesr andf, with the origin at the center of the disk
The two-dimensional displacement vector is written asu
5uxex1uyey5urer1ufef . The radial and tangential dis
placementsur anduf are given by

ur5ux cosf1uy sinf, uf52ux sinf1uy cosf.
~14!

Similarly strain, dilatation, and rotation can be worked out
polar coordinates

h5
]ur

]r
1

ur

r
1

1

r

]uf

]f
, 2z5

]uf

]r
1

uf

r
2

1

r

]ur

]f
,

e rr 5
]ur

]r
, eff5

ur

r
1

1

r

]uf

]f
, ~15!

2e rf5
]uf

]r
2

uf

r
1

1

r

]ur

]f
.

Finally, because the medium is isotropic the stress-strain
lation in polar coordinates is as simple as it is for Cartes
coordinates@Eq. ~6!#:

s rr 5
E

12n2
~e rr 1neff!,

sff5
E

12n2
~eff1ne rr !, ~16!

s rf5
E

2~11n!
e rf .

The solutions to Eqs.~12! and ~13! are of the forms
n
d

ar

e-
n

h5Ank2Jn~kr !cosnf cosvt,
~17!

2z5Bnk82Jn~k8r !sinnf cosvt,

whereJn is Bessel’s function of ordern @16#, An andBn are
constants, and

k5vA~12n2!r

E
, k85vA2~11n!r

E
. ~18!

There is a second set of solutions with ‘‘cos’’ and ‘‘sin
interchanged. We shall only consider situations which
symmetric inf, so thatur(r ,f)5ur(r ,2f) and uf(r ,f)
52uf(r ,2f). Hence we restrict ourselves to the above s
The displacements corresponding to the above solutions
given by

ur~r ,f!5FAn

dJn~kr !

dr
1nBn

Jn~k8r !

r Gcosnf cosvt,

~19!

uf~r ,f!52FnAn

Jn~kr !

r
1Bn

dJn~k8r !

dr Gsinnf cosvt.

This can be easily verified by substituting Eqs.~19! into Eqs.
~15!; thereby one recovers the symmetric solution of E
~17!.

At the boundary of the disk, and shear and compress
have to vanish:s rr (R,f)50 ands rf(R,f)50. For n50
andB50 we have purely radial vibrations in whichuf van-
ishes andur is independent off. The boundary condition
then reads

dJ1~kR!

dR
1

n

R
J1~kR!50. ~20!

Areal dilatation and stress are maximal at the center of
disk, although the center is not displaced. The displacem
vanishes along node lines, which are circles forn50.

There is a second set of solutions withur50, uf inde-
pendent off and node lines which are circles. These mod
are not excited in head-on collsions for which we impose
symmetryuf(r ,f)52uf(r ,2f).

In the general case, i.e., forn>1, there is no tangentia
displacement,uf50, for f5pk/n and no radial displace
ment,ur50 for f5p(2k11)/2n with kP$0, . . . ,2n21%.
These values off representn node lines for eitheruf or ur .
The boundary conditions in general imply two equations
2AnF12n

R

dJn~kR!

dR
1S k22

12n

R2
n2D Jn~kR!G1nBn~12n!F 1

R

dJn~k8R!

dR
2

1

R2
Jn~k8R!G50, ~21!

22nAnF 1

R

dJn~kR!

dR
2

1

R2
Jn~kR!G1BnF 2

R

dJn~k8R!

dR
1S k822

2n2

R2 D Jn~k8R!G50. ~22!

We eliminateAn andBn and use
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dJn~kR!

dR
5kJn21~kR!2n

Jn~kR!

R
~23!

to obtain the eigenvalue equation

~12n!2~12n2!kk8Jn21~kR!Jn21~k8R!1~12n!@k22~12n!~12n2!n#@kJn21~kR!Jn~k8R!1k8Jn21~k8R!Jn~kR!#

1@k422~n21n!~12n!k2#Jn~kR!Jn~k8R!50. ~24!
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For any fixed numbern, there are infinitely many solu
tions vn,l , numbered byl 50, . . . ,̀ . These solutions have
been determined numerically. Sometimes solutions
neighboringl ’s are very closely spaced and difficult to fin
numerically. It is then advantageous to simultaneously de
mine the zeros of the derivative of Eq.~24!, which are much
more regularly spaced. In between a pair of zeros of
derivative, we then search for a zero of the function.

The ratioA:B is determined by reinserting the values f
vn,l into Eq.~21!. We are left with one free constant for eac
eigenmode. This constant can be fixed by using normali
eigenmodes, according to

E
0

2p

dfE
0

R

dr r $@~ur
n,l~r !cos~nf!#2

1@uf
n,l~r !sin~nf!#2%5pR2. ~25!

Here we have introduced dimensionless quantitiesur
n,l(r )

anduf
n,l(r ) for the radial variation of the displacement@Eq.

19#:

FIG. 2. Plot of the displacement of three simple eigenmod
The radii and circles of the originally undeformed disk assume
distorted shapes sketched here.
r

r-

e

d

Rur
n,l~r !ªFAn,l

dJn~kn,l r !

dr
1nBn,l

Jn~kn,l8 r !

r G , ~26!

Ruf
n,l~r !ª2FnAn,l

Jn~kn,l8 r !

r
1Bn,l

dJn~kn,l r !

dr G .
Zeros inur

n,l(r ) anduf
n,l(r ) give rise to radial node lines

of ur(r ,f) anduf(r ,f). A given value ofl does not imply
a given number of radial node lines of the radial or tangen
displacement, because the boundary conditions mix the
displacement components. The displacements for a
eigenmodes are sketched in Fig. 2 and the frequenciesvn,l of
the modes are plotted versus the number of radial nodesn in
Fig. 3. For collisions, an important characteristic of a mo
is the maximal radial and tangential displacement at the e
of the disk

Cn,lªur
n,l~R!, Sn,lªuf

n,l~R!. ~27!

The modes can roughly be divided into two classes w
primarily radial or tangential displacement. In Fig. 3 rad
oscillations are characterized byCn,l.Sn,l , tangential oscil-
lations byCn,l,Sn,l .

For n.2 two distinct regimes can be distinguished. F
small l the solutions are regularly spaced and the arran
ment barely changes, when going fromn→n11. The differ-
ence in magnitude between tangential and radial displa
ment is small ~e.g., Cn,l.Sn,l), and radial as well as
tangential modes tend to cluster, the more so the largern. For
l @n the solutions,vn,l for the radial and tangential mode

s.
e

FIG. 3. Dimensionless eigenfrequenciesvn,lR/c of an elastic
disk vs n(n50.33). We distinguish radial and tangential oscill
tions, according to the dominant displacement at the edge of
disk.
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appear to be almost independent of each other, as they a
the casen50. This results in an irregular spacing of th
frequencies of the modes. The distinction between prima
radial and tangential displacement is pronounced. Ra
Cn,l :Sn,l are typically larger than 1:10~or 10:1) whenl
@n, exceeding 1:100 for very largel. When two solutions
have very similar frequencies the ratios are smaller at
surface, but this does not change the overall character o
mode. The number of node lines increases uniformly wit
in both cases. As a general statement we conclude tha
mixing of the displacements introduced by the bound
conditions becomes more important with increasingn and
decreasingl.

For n51 dilatation, rotation, stress and shear disapp
linearily at the origin, but there is a finite displacement of t
center~see Fig. 2!. For n>2 displacement of the center dis
appears liker n21, dilatation and rotation liker n, and stress
and shear go liker n22 ~and are maximal at the origin forn
52). Thus for increasingn the deformations are increasing
concentrated toward the edge of the disk.

The mode with the lowest frequency is the quadrupo
mode (n52,l 50), where contraction in one direction is m
by expansion in the orthogonal direction~see Fig. 2!. This
mode will turn out to be the most important mode for t
storage of elastic energy, as suggested by Rayleigh for th
dimensional spheres@12#.

C. Energy of vibrations

We have a complete orthonormal system of eigenfu
tions such that any~symmetric! state of the disk can be ex
panded in this set:

S ur~r ,f!

uf~r ,f!
D 5(

n,l
Qn,lS ur

n,l~r !cos~nf!

uf
n,l~r !sin~nf!

D . ~28!

To express the elastic energyEelas in terms of the expansion
coefficients,Qn,l , we first use partial integration togethe
with force free boundary conditions to rewrite the elas
energy as

Eelas52
E

2~12n2!
E

S
d2x(

k
uk~x!~Lu!k~x!. ~29!

Next, we use the equation for the eigenfunctions ofL,

~Lun,l !k~x!52kn,l
2 uk

n,l~x!, ~30!

to rewrite the elastic energy as

Eelas5
m

2(
n,l

vn,l
2 Qn,l

2 . ~31!

The kinetic energy of a vibrating disk is given by
in

ly
s

e
he
l
he
y

r

r

e-

-

Ekin5
r

2E0

2p

dfE
0

R

dr r @ u̇r
2~r ,f!1u̇f

2 ~r ,f!# ~32!

5
m

2(
n,l

Q̇n,l
2 , ~33!

so that the total energy of a vibrating disk not interacti
with external forces is given by

H0
ª(

n,l

` S 1

2m
Pn,l

2 1
m

2
vn,l

2 Qn,l
2 D . ~34!

Here we have introduced canonical momentaPn,l5mQ̇n,l .
In the elastic approximation a vibrating disk behaves like
set of independent harmonic oscillators with canonical l
Qn,l and canonical momentaPn,l , obeying Hamilton’s equa-
tion of motion

dQn,l

dt
5

]H0

]Pn,l
5

Pn,l

m
,

~35!

2
dPn,l

dt
5

]H0

]Qn,l
5mvn,l

2 Qn,l .

III. EQUATIONS OF MOTION IN THE PRESENCE
OF A WALL

The head-on collision of two identical elastic disks
equivalent to one elastic disk hitting a hard wall, which its
is not deformed elastically. We choose a coordinate sys
such that the wall is located atx50 ~see Fig. 4!, and the disk
is approaching from the left. The interaction between d
and wall is modeled by a potentialV(x)5V0eax, wherex
5x(f) is the distance between the edge of the deform
disk and they axis. The choice ofV0 is arbitrary, because i
only affects the position of the wall, as can be seen from
substitutionV0eax5V08e

a„x1(lnk)/a… with V05kV08 . A hard
core interaction is recovered in the limita→`. We assume
that the disk is moving along thex axis in the positive direc-
tion. Its center of mass position is denoted byx0(t).

FIG. 4. Illustration of the model of an elastic disk hitting a rig
wall.
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We expand an arbitrary, symmetric state of the disk
normal modes

S ur~r ,f,t !

uf~r ,f,t ! D 5(
n,l

Qn,l~ t !S ur
n,l~r !cos~nf!

uf
n,l~r !sin~nf!

D , ~36!

with time dependent expansion coefficientsQn,l(t). Since
the wall is only pushing against the edge of the disk, we n
to know the location of the boundary. The radial and tang
tial distortion at the edge are given by
ti
n

d
-

ur~R,f,t !5(
n,l

Qn,l~ t !Cn,lcosnf,

~37!

uf~R,f,t !5(
n,l

Qn,l~ t !Sn,lsinnf.

The location „x(f,t),y(f,t)… of an element at„x0(t)
1R cosf,Rsinf… without deformation, is then given by
S x~f,t !

y~f,t ! D 5S x0~ t !1@R1ur~R,f!#cosf2uf~R,f!sinf

@R1ur~R,f!#sinf1uf~R,f!cosf D . ~38!

Its x component enters into the wall potential and is expressed in terms of normal modes as follows:

x~f,t !ªx0~ t !1R cosf1(
n,l

Qn,l~ t !~Cn,lcosnf cosf2Sn,lsinnf sinf!. ~39!

The total energy of an elastic disk interacting with a fixed wall is given by

Hª

1

2m
p0

21(
n,l

` S 1

2m
Pn,l

2 1mvn,l
2 Qn,l

2 D1V0E
2p/2

p/2

df eax~f,t !. ~40!

The dynamic evolution of the expansion coefficientsQn,l(t) follows from Hamilton’s equations of motion:

dQn,l

dt
5

]H

]Pn,l
,

2
dPn,l

dt
5

]H

]Qn,l

5mvn,lQn,l1aV0E
2p/2

p/2

df~Cn,lcosnf cosf2Sn,lsinnf sinf!eax~f,t !. ~41!

Instead of using real valued functionsQn,l(t) and Pn,l(t), we find it convenient to introduce a complex functionqn,l(t)
5qn,l

R (t)1 iqn,l
I (t) such that

Qn,l~ t !5Re@qn,l~ t !eivn,l t#,

Pn,l~ t !5mvn,l Im@qn,l~ t !eivn,l t#. ~42!

Hamilton’s equations of motion then read

q̇n,l
R cos~vn,l t !2q̇n,l

I sin~vn,l t !50,

q̇n,l
R sin~vn,l t !1q̇n,l

I cos~vn,l t !52
aV0

mvn,l
E

2p/2

p/2

df~Cn,lcosnf cosf2Sn,lsinnf sinf!eax~f,t !.
so

isk
These two equations can be combined into a single equa
for the complex functionqn,l(t)

d

dt
qn,l52

iaV0

mvn,l
e2 ivn,l tE

2p/2

p/2

df~Cn,lcosnf cosf

2Sn,lsinnf sinf!eax~f,t !. ~43!
on The time evolution of the center of mass velocity al
follows from Hamilton’s equation of motion

dv
dt

5
1

m

dp0

dt
52

1

m

]

]x0
H52

aV0

m E
2p/2

p/2

df eax~f,t !,

~44!

completing our description of a two-dimensional elastic d
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hitting a wall. The only values needed for every mode (n,l )
are the frequencyvn,l and the maximal displacementsCn,l
andSn,l . The actual numerical integration of the equation
evolution ~43! requires the consideration of many differe
modes to find a good estimate of the coefficient of rest
tion.

IV. NUMERICAL RESULTS

The actual integration of Eq.~43! is numerically demand-
ing, when high accuracy is required. Time steps have to
set quite low to capture the oscillations of the fastest mod
Numerical accuracy is limited by the number of modes t
can be used~usually less than 1000!, so that a fourth order
Runge-Kutta method suffices for the numerical integration
the equations of motion. Starting fromx(f,t) and qn,l(t),
we updatex0 according to Eq.~44! and allqn,l for a given
set (n<nmax,l< l max) according to Eq.~43!. Then a new
x(f,t1Dt) is calculated from Eq.~39!. For a normal colli-
sion of a disk with no excited modes the integration over
edge of the circle can be limited to the upper quadrant
cause of symmetry. We typically discretize the upper qu
rant with 256 values forf, and retrieve the values of cosnf
and sinnf from a look-up table to speed up the computati
effectively. Initial conditions areqn,l50 for all n,l , and a
value ofx0 sufficiently negative, such that there is no inte
action with the wall.

In our simulations and plots we measure velocity in un
of c5AE/r, distances in units ofR, and forces in units of
mc2/R5pRE. The numerical simulations have been pe
formed for a range of initial velocities 0.005c<v i<0.3c and
a value ofn50.33 for Poisson’s ratio. A few additional run
were made with other values ofn to check the dependence o
our results on Poisson’s ratio. In Fig. 5 the collsion of
elastic disk with a rigid wall is shown, as calculated nume
cally according to the above procedure.

Computation of the coefficient of restitution requires tw
different extrapolations. Modelling disks as elastic contin
requires the limit of infinitely many modes. At the same tim
the artificial exponential potential, introduced to make t

FIG. 5. Time sequence of a disk withv i50.2c hitting a rigid
wall. The deformations remaining after the collision can be clea
identified.
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collision accessible to numerical calculations, should
made infinitely hard.

A harder potential of the wall increases the energy, wh
remains in the elastic modes for two reasons:~1! The force
which excites the elastic modes is stronger.~2! During the
collision less energy is stored in potential energy, which
returned to kinetic energy after the collision and hence c
not be transferrred to the internal degrees of freedom. R
ing the number of modes has the opposite effect. The c
ficient of restitutione is closer to 1 for a larger number o
modes, because the larger number of modes allows a b
adjustment of the shape of the disk, so that collisions beco
effectively ‘‘softer.’’ In both cases extrapolation from finit
values is possible, it is more difficult for the number
modes than for the potential parametera.

To select the right set of modes, we use the followi
procedure. For every initial velocityv i the modes were
ranked according to their average energy content in a
liminary run. As expected, the average energy content o
mode decreases with increasing frequencyvn,l . It turns out
that the purely radial modes@see Eq.~20!# are particularly
important. Typically 75% of the most significant modes ha
n50. Another essential class of modes hasl 50. The impor-
tance of these two classes can be inferred from Fig. 6, wh

y

FIG. 6. Logarithm of energy~arbitrary units! in modes with low
(n,l ) at closest approach. The spectrum is dominated by the q
drupolar mode (n52,l 50).

TABLE I. The ten most important modes ranked according
the average fraction of the total energy during collision fora
5500R,v i50.1c using 1600 modes.

Rank n l Average energy Energy after collision

1 2 0 0.1594843 0.0513636
2 3 0 0.0480930 0.0234695
3 0 0 0.0231257 0.0089346
4 4 0 0.0220028 0.0038760
5 0 1 0.0128242 0.0003144
6 5 0 0.0114396 0.0027244
7 1 1 0.0110218 0.0002610
8 1 0 0.0066413 0.0002548
9 6 0 0.0059540 0.0021365

10 0 2 0.0048560 0.0000279
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we show the distribution of energy over modes (n,l ) at clos-
est approach. In Table I we list the energy averaged over
entire collision as well as the energy after collision for t
ten most important modes. It can be seen that the ave
energy content of a mode during the collision can be v
different from the energy remaining in the oscillation aft
the collision has been completed.

In Fig. 7 the energy which is absorbed in the elas
modes is plotted versus potential parametera. It scales
nicely with 1/a, because the energy that is stored in the w
potential at closest approach is also}1/a. Hence the ex-
trapolationa→` is straightforward, except for a small in
tial velocity, when the coefficient of restitution for a give
potential parametera approaches 1. To identify the inelast
signature of the collisions one has to choose ever ha
potentials. This makes it difficult to extrapolate to the lim
v i→0 numerically. Fortunately the quasistatic limit can
treated analytically, as discussed in Sec. V.

The extrapolation of the energy stored in vibrations

FIG. 7. Fraction of the energy stored in the elastic mode
2e2 after collision with a wall potentialV5V0eax, extrapolated to
a→`. The different curves~from bottom to top! correspond to
different values of initial velocity: v i /c
50.005,0.01,0.02,0.04,0.06, . . . ,0.30. Forv i<0.1c only the three
most significant data points were used to determine the regres
lines.N5940 modes were taken into account.

FIG. 8. Fraction of energy stored in vibrational modes extra
lated toN→`. The energy scales with 1/AN. For the regression
lines N5300, 400, 600, and 940 were used.
he
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infinitely many modes is shown in Fig. 8. The limitN→` is
approached like 1/AN. The more violent collisions need
higher number of modes for the 1/AN regime to appear.

The two extrapolation procedures have been perform
for a range of initial velocities and two values of Poisson
number. The resulting coefficient of restitutione is plotted
versus the initial velocity in Fig. 1. It is seen to approach o
in the quasielastic limit and to decrease with increasing re
tive velocity. Collisions are found to be more inelastic f
higher values ofn.

V. QUASISTATIC APPROACH

As we just have seen, the limiting casev i /c!1 is diffi-
cult to treat numerically. However Hertz’ law of contact ca
be extended to two dimensions. Solving the problem in t
dimensions is actually more complicated than the thr
dimensional case, because there are no local solutions.

The quasistatic acceleration of a disk by a hard wall
equivalent to a disk in equilibrium in a gravitational field an
supported by a hard wall. This problem was solved fo
point contact by Michell@17#. To compute the compressio
caused by the gravitational field we have to generalize
solution to an extended contact between the disk and
supporting wall.

In Ref. @18# the contact pressure was calculated for a tw
dimensional contact of cylindrical bodies. This solution c
be taken over to our problem of a two-dimensional disk w
one-dimensional loading. Inside the loaded region2a<y
<a ~see Fig. 9!, a normal stressp(y) given by

p~y!5
2P

pa2
~a22y2!1/2 ~45!

acts on the surface. HereP is the total load,R is the radius of
the disk anda254PR/(pE). Integrating over the loaded
region yields the stresses in the elastic disk due to the nor
pressurep(y):

1

ion

-

FIG. 9. Visualization of the quasistatic approach.
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syy~x,y!5
22x

p E
2a

a p~s!~y2s!2ds

@~y2s!21x2#2
,

sxx~x,y!52
2x3

p E
2a

a p~s!ds

@~y2s!21x2#2
, ~46!

sxy52
2x2

p E
2a

a p~s!~y2s!ds

@~y2s!21x2#2
.

Along the axis of symmetry integration is possible, and o
finds

syy~x,0!52
2P

pa2S a212x2

~a21x2!1/2
22xD ,

sxx~x,0!52
2P

p
~a21x2!21/2, sxy~x,0!50. ~47!

In a three-dimensional elastic medium, the displacem
decreases like 1/r for large distancesr from the loaded re-
gion. In a two-dimensional elastic medium with on
dimensional loading, the displacement varies as ln(r), so that
the displacement can only be defined relative to an arbitra
chosen datum~which for three-dimensional systems is us
ally taken at infinity!. This implies that the total deformatio
d cannot be computed from the local stress distribut
p(y). To find the total compression for a two-dimension
system one has to consider the stress distribution in the
of the two-dimensional elastic body as well as its shape
size.

To this end we need to generalize the solution of Mich
@17#, who solved the problem of a heavy disk supported b
point force. The stress generated by the gravitational forc
most easily evaluated in a coordinate system whose orig
located in the center of the sphere. The equations of equ
rium for a uniform downward force of magnituderg read

]sxx

]x
1

]sxy

]y
5rg,

]syy

]y
1

]sxy

]x
50, ¹2~syy1sxx!50

~48!

and are solved by

sxx5
1
2 rgx, syy52 1

2 rgx, sxy5
1
2 rgy. ~49!

The stress due to the point contact is purely radial in a co
dinate system whose origin lies in the point of contact:

s rr 522rgR2
cosf

r
. ~50!

To obtain the total stress distribution we transform the str
due to gravitation~49! to the coordinate system whose orig
lies in the point of contact

sxx5
1
2 rg~x2R!, syy52 1

2 rg~x2R!, sxy5
1
2 rgy.

~51!

and superimpose the two contributions to the stress. The
sulting solution does not satisfy the boundary conditions
e

nt

ly

n
l
lk
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ll
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is
is
b-

r-
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f

stress free edges, which can be guaranteed by adding a
form biaxial tensionsxx5syy5rgR. Hence the total stres
is given by

sxx5rgS x/22
2R2x3

~x21y2!2D ,

syy52rgS ~x22R!/21
2R2xy2

~x21y2!2D . ~52!

The radial stress distribution~50! from the point contact
~which creates a logarithmic divergence in the displaceme!
will now be replaced by the realistic stress distribution~47!
for an extended contact. The total stress along the axi
symmetryy50 is then given by

sxx~x,0!52
P

pS 2

~a21x2!1/2
2

x

2R2D ,

~53!

syy~x,0!52
P

pS 2~a212x2!

a2~a21x2!1/2
2

4x

a2
1

x22R

2R2 D .

Here the total load is simply given byP5mg5pR2rg.
The strain can be calculated from the formula

exx5
1

E
~sxx2nsyy!, ~54!

and the total compressiond of the disk is found by integrat-
ing exx from x50 to x52R. For a!R we find

d52E
0

2R

exxdx5
P

pE
@2ln~4R/a!212n# ~55!

5
P

pEF lnS 4RpE

P D212nG .
~56!

The compressiond can also be obtained from the relate
problem of a disk compressed between two walls, which w
solved in Ref.@19#. In this case the total deformation is twic
the deformation as calculated above for smalld.

In Fig. 10 we showP(d) as computed by three differen
methods. The analytical results are compared to the dyna
calculations of Sec. IV. If the disk is held fixed at a give
distance from the wall, it will assume a deformation whi
minimizes its total energy. This deformation and the for
acting on the disk can be computed using the expansio
the elastic deformation by the modes calculated in Sec
The total energy given by Eq.~40! with Pn,l50 is iteratively
minimized until convergence is achieved. The numerical
sult of this calculation is shown as a dashed-dotted line
Fig. 10. The results from the quasistatic calculation and fr
the minimization procedure agree well for smalld, whereas
for larger deformations one observes deviations from He
law of contact. The forces during the dynamical collision a
considerably higher than in the quasistatic limit, because
compression is localized. The results of the dynamic cal
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lation are shown for two initial velocities to demonstrate t
approach towards the quasistatic case for the smaller in
velocity.

In the limit of smallP, Eq. ~56! reads

d5
P

pE
lnS 4RpE

P D , ~57!

and may be inverted to yield

P5
dpE

ln ~4R/d!
1OS d ln ln 1/d

~ ln d!2 D . ~58!

To lowest nontrivial order the potential energy is given b

V.
1

2
d2

pE

ln~4R/d!
. ~59!

The kinetic energy before collision is given by1
2 v i

2pR2r. In
the limit of low v i , where the quasistatic approximation
expected to hold, conservation of energy can be used to
tain the maximum value ofd

dmax.
v i

c
RAln

4c

v i
,

and hence

t}
R

c
Aln

4c

v i
~60!

for the contact timet. In the limit v i→0 the contact time
diverges logarithmically, i.e., much slower than for thre
dimensional spheres, where Hertz’ theory predictst
}v i

21/5. In Fig. 11, contact time and maximal compressi
are plotted with the force calculated from Eq.~56! as a func-
tion of the initial velocities. The very slow divergence of th
contact time withv i→0 can be observed. The results for t
contact time as obtained from the quasistatic calcula

FIG. 10. Dimensionless force vs compression as calculated
different approaches. For the dynamic calculation we have u
a/R5500 and two values of the initial relative velocity:v i /c
50.1 and 0.04. The arrows indicate the direction of time. 13
modes were used for the relaxation towards the minimal energy
a given distance.
al

b-

-

n

agree well with the numerical simulations of the full d
namic problem in the range of velocities where both meth
apply.

Our aim is an approximate expression for the coeffici
of restitutione in the limit of small velocitiesv i . This can be
achieved by using the quasistatic force law in the equati
of motion. Our approach is a generalization of Rayleigh
@12#, who derived the energy stored in the fundamental mo
in the case of spheres.

We replace the wall potential in Eq.~40! by a potentialV,
that acts only at the pointf50 of the boundary. This
amounts to

Hª

1

2m
p0

21(
n,l

` S 1

2m
Pn,l

2 1mvn,l
2 Qn,l

2 D1V@x~f50,t !#,

~61!

where

x~f50,t !5x0~ t !1R1(
n,l

Qn,l~ t !Cn,l . ~62!

From Hamilton’s equations of motion we derive

2
dPn,l

dt
5

]H

]Qn,l
5mvn,lQn,l1Cn,l

]V

]x
. ~63!

Next we approximate]V/]x by the forceP as calculated
from Eq.~56!. Using the compact notation~42!, we can write

d

dt
qn,l52 ie2 ivn,l t

Cn,l

mvn,l
P~ t !, ~64!

d

dt
v52

1

m
P~ t !, ~65!

d

dt
d52v. ~66!

th
d

0
or

FIG. 11. Dimensionless contact timetR/c and rescaled maxi-
mal compression (dmax/R)(c/v i) as calculated from the quasistat
approximation. The result fort compares well with data points
(L) from the dynamical calculation.
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These equations can be integrated numerically with ini
conditionsqn,l50, d50, andv5v i . The energy which re-
mains in the modes after collision is given by

Hex5
m

2(
n,l

vn,l uqn,l~t!u2. ~67!

In Fig. 12 we show how much energy is stored in t
modes for lowv i . The quasistatic approximation agrees
magnitude with the result from the dynamical calculatio
Most of the energy goes into the quadrupolar mode. Si
the quasistatic approach is only correct to first order,
decreasing vibrational energy forv i.1022c is presumably
unphysical.

VI. CONCLUSIONS

It was our aim to derive the coefficient of restitution as
function of velocity, starting from a microscopic model
simple objects with internal degrees of freedom, which c
absorb part of the kinetic energy of translation. We ha
discussed in detail the head-on collision of two elastic dis
initially nonvibrating. This problem is equivalent to the co
lision of an elastic disk with a rigid wall, representing th
plane of reflection symmetry of the two colliding disks.

The dynamics of a collision has been formulated w
help of Hamilton’s equations of motion for the normal coo
dinates of the elastic disk, interacting with a repulsive w
potential. The resulting dynamic equations were solved
merically for a finite number of modes and then extrapola
to the case of infinitely many modes.

The main results are the following. In contrast to the qu
sistatic theory of Hertz, the dynamic collision of two iden
cal elastic spheres is inelastic in the sense that the rela
velocity is decreased, corresponding to a coefficient of re
tution smaller than 1. The amount of translational ene
which is converted to vibrational energy depends on rela
velocity and Poisson’s numbern. The conversion is more
effective for materials with low shear modulus, correspon

FIG. 12. Fraction of energy stored in the lowest 1800 modes
velocity using the Rayleigh approach. For these very low veloci
the energy uptake is dominated by the quadrupolar mode (n52,l
50). For comparison we show data points (L) from the full dy-
namic calculation.
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ing to a value ofn close to 1. For high initial velocities the
coefficent of restitution can be rather small, e.g.,e;0.65 for
n50.9 andv i50.3c. In the quasistatic limit,v i→0, colli-
sions become more and more elastic. We have genera
the quasistatic approach of Hertz and Rayleigh to two dim
sions, and shown that the contact timet diverges logarith-
mically asv i→0 and the maximum deformation vanishes
dmax;v it. The dynamic approach agrees with the quasist
theory in the regime, where both theories apply.

We expect the collisions to be more strongly inelastic
the two spheres have different size. For one-dimensio
elastic rods we could show that the coefficient of restitut
is strictly 1, if the two rods have equal length, no mat
whether vibrations are excited before collsion or not. In t
latter case, when no vibrations are excited, the coefficien
restitution is given by the ratio of lenghts of the two rod
We are presently extending our calculations to disks of d
ferent radii. Future perspectives include collisions of elas
spheres as well as more elaborate models of contact,
including roughness.
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APPENDIX

In this appendix we show that the differential operatorL
as defined in Eq.~8! is Hermitean with force free boundar
conditions, which read

s rr ~R,f!5F]ur

]r
1nS ur

r
1

1

r

]uf

]f D G
r 5R

50,

~A1!

s rf~R,f!5F ]

]ur
f1

1

r

]

]uf
f2

uf

r G
r 5R

50.

For two arbitrary displacement fieldsu andv, we have

E
S
dx2v•S 11n

2
¹~¹•u!1

12n

2
DuD

5E
S
dx2u•S 11n

2
“~“•v!1

12n

2
DvD

1 boundary terms. ~A2!

L is Hermitian, if the boundary terms vanish withu and v
satisfying Eq.~A1!. Using the normal vectorr̂ along the
boundary andds5r df, the boundary terms read

s
s



n:

d
s
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11n

2 E
]S

ds@~“•u!~ r̂•v!2~“•v!~ r̂•v!#1
12n

2 E
]S

ds@v~ r̂•“ !•u2u~ r̂•“ !•v# ~A3!

5
11n

2 E
]S

dsFv r S ]ur

]r
1

ur

r
1

1

r

]uf

]f D2ur S ]v r

]r
1

v r

r
1

1

r

]vf

]f D G1
12n

2 E
]S

dsS v r

]ur

]r
1vf

]uf

]r
2ur

]v r

]r
1uf

]vf

]r D
~A4!

5E
]S

dsH v rF]ur

]r
1nS ur

r
1

1

r

]uf

]f D G2
12n

2 S ur

]vf

]f
1uf

1

r

]vf

]f D J 2E
]S

dsH urF]v r

]r
1nS v r

r
1

1

r

]vf

]f D G
2

12n

2 S v r

]uf

]f
1vf

1

r

]uf

]f D J . ~A5!

In Eq. ~A5! we rearranged the terms for our purposes. The following relationships are derived using partial integratio

E
0

2p

df vf

]ur

]f
52E

0

2p

df ur

]vf

]f
1@vfur #0

2p,

E
0

2p

df vf

]uf

]f
52E

0

2p

df uf

]vf

]f
1@ufvf#0

2p. ~A6!

In both equations, the boundary terms vanish becauseu andv are single valued functions off. The same relationships hol
with u andv interchanged. We use these and subtract a termufvf /r from both integrals to finally write the boundary term
as

E
]S

dsH v rF]ur

]r
1nS ur

r
1

1

r

]uf

]f D G1
12n

2
vfS ]ur

]f
1

1

r

]uf

]f
2

uf

r D J
2E

]S
dsH urF]v r

]r
1nS v r

r
1

1

r

]vf

]f D G1
12n

2
ufS ]v r

]f
1

1

r

]vf

]f
2

vf

r D J 50. ~A7!

Obviously, the left-hand side of Eq.~A7! vanishes if the boundary conditions~A1! are fulfilled byu andv. Finally we observe
thatL is also Hermitian with respect to a fixed boundaryur5uf50 andv r5vf50.
v.
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@7# T. Pöschel, Z. Phys.46, 142 ~1928!; J. P. Dilley, Icarus105,
225 ~1993!.

@8# N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Po¨schel,
Phys. Rev. E53, 5382~1996!.

@9# G. Giese and A. Zippelius, Phys. Rev. E54, 4828~1996!.
@10# T. Aspelmeier, G. Giese, and A. Zippelius, Phys. Rev. E57,

857 ~1998!.
@11# T. Aspelmeier and A. Zippelius~unpublished!.
@12# O. M. Rayleigh, Philos. Mag. Ser. 611, 283 ~1906!.
@13# S. Timoshenko and J. N. Goodier,Theory of Elasticity, 3rd ed.

~McGraw-Hill, New York, 1951!.
@14# A. E. H. Love, A Treatise on the Mathematical Theory o

Elasicity, 4th ed. ~Cambridge University Press, Cambridg
1952!, p. 497.

@15# L. D. Landau and E. M. Lifshitz,Course of Theoretical Phys
ics ~Pergamon, New York, 1959!, Vol. 7.

@16# Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun~Dover, New York, 1965!.

@17# J. H. Michell, Proc. Lond. Math. Soc.32, 44 ~1900!.
@18# K. L. Johnson,Contact Mechanics~Cambridge University

Press, Cambridge, 1985!, Chap. 4.2, p. 99.
@19# K. L. Johnson,Contact Mechanics~Ref. @18#!, Chap. 5.6.


