PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999

Coefficient of restitution for elastic disks
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We compute the coefficient of restitutie@nstarting from a microscopic model of elastic disks. Collisions are
found to be inelastic, in general, with a finite fraction of translational energy being transferred to elastic
vibrations. The coefficient of restitution depends on the relative velocity of the colliding disks, such that
collisions become increasingly more inelastic for larger relative velocities. The predictions of the model are in
agreement with the approach of He[tz Reine Angew. Math92, 156 (1882] in the quasistatic limit. The
coefficient of restitution depends on the elastic constants of the material via Poisson’s number. The elastic
vibrations absorb kinetic energy more effectively for soft materials with low ratios of shear to bulk modulus.
[S1063-651%99)05202-3

PACS numbgs): 46.40—f, 62.30+d, 83.70.Fn

I. INTRODUCTION e=—v;lv;. 1)
The most important characteristic of granular media is theror perfectly elastione-dimensionatods, phenomenologi-
inelastic nature of the interparticle collisions. The removal ofcal wave theory yieldg=1,/I,, independent of the relative
kinetic energy in a granular gas is responsible for nonequivelocity of the colliding rods. Herd, (I,) denotes the
librium phenomena that are of theoretical and experimentaength of the shorteflongep rod. If both rods are identical,
interest. In computer simulations of granular matter, this enwe havee=1 always. Using the approach of Hertz, Rayleigh
ergy loss is usually treated in a very simplified way. In event{12] estimated that the fraction of energy stored in the fun-
driven simulations[1], a fixed coefficient of restitution is damental mode for two slowly colliding spheres is about
used, i.e., after each interparticle collision a certain fractior0.02;/c (where c is the velocity of sound in a one-
of the energy involved is lost. In experimdi], the coeffi- dimensional rod of the same matejialhile being quite
cient of restitution is found to depend on Ve|ocity_ When small for many realistic Scenal’iOS, his value for the coeffi-
using molecular dynamics techniquEgl, ad hoc phenom- cient of restitution thus depends on velocity and does not

enological assumptions for the intergrain force laws are invanish for identical spheres. o
troduced.(For a recent review, see R§#].) In this paper we shall analyze collisions of two-

Several microscopic mechanisms for the decay of kinetiéiimensional elastic disks. Starting from three-dimensional

energy during collisions have been discussed. Permaneﬁ{aStIC objects, the two-dimensional case can 'be realized in
Hvo ways, called plane stress and plane stfdig]. Plane

plastic deformation of granular particles has been prOposestress describes the situation of thin plates, where the stress

as a possible mechanism for the removal of kinetic energ ; .
[5]. Viscoelastic behavior was used to extend the theory o omponents on th? face§ of the pIaFes_dusappear. With the
’ dditional assumption of in-plane oscillations only, the equa-

Hertz [‘.5] to inela§tic impaqt. One eithe_r invokes a phenom'tions of two-dimensional elasticity apply. In the case of

enological damping term in the equations of motjo or  jane strain the end sections of a prismatic body are confined

uses a quasistatic approximation for low relative impact vepanveen smooth rigid planes, so that displacements in the

locities [8]. axial direction are prevented. If the forces do not vary along
More recently temporary storage of energy in elasticthe |ength for symmetry reasons, it may be assumed that

modes[9,10] has been discussed for one-dimensional rodsthere is no axial displacement anywhere. This again reduces

During collisions, energy is exchanged between translationahe problem to two dimensions. It is easy to show that the

motion and internal degrees of freedom, whereas in betweegquations for plane strain are the same as those for plane

collisions the energy stored in the elastic modes decays. Htress, provided one makes the substitutions

the collision rate is high enough, which is frequently ob-

served in simulations as a precursor for inelastic collapse, E

elastic energy may be transformed back into kinetic energy. E—»——, v—

Thereby inelastic collapse is avoided, and a rich dynamics of 1-07 1-v

temporary clusters is observed, including breakup and refor-

mation of clusters as well as relaxation to a final state withwhereE denotes Young’s modulus andPoisson’s number.

all particles in contacf11]. For plane stress Poisson’s number has the three-
The quantity controlling the fraction of kinetic energy, dimensional value, and hence is restricted-td<v<3.

which is lost in a collision, is the coefficient of restitutien ~ With the above transformation this corresponds—tg<wv

We will restrict ourselves to head-on, normal collisions, <1 for plane strain. In particular values ofclose to 1 can

where € is simply defined as the ratio of relative velocities be achieved for plane strain by materials with low shear

after and before collision: modulusu, like rubber.
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0.9 An isotropic elastic body has only two independent elastic
I constants, the shear modulusand the compressional modu-
© 0.85 lus K. In terms of these the elastic free energy is given by
0.3
07| Eelas:f d2x[ u( € — Sijen/2)°+Ke;/2]. (4)
0.7 The notation implies summation over indices which appear
— twice. The stress tensor is defined as the derivative of the
068 005 o1 o1 o0z o025 o3 elastic free energy with respect to the strain field, and is
vi/c explicitly given by
1
_ FIG. 1. Coefficient of restitutior as a functiop _o_f initial yeloc- o= 5Ee|as: 2u(eij— 0 €1/2)+ K€ )
ity for v=0.33 andv=0.9. Herev,; denotes the initial relative ve- O€jj

locity, expressed in units af=VE/p=1 (see below
It is sometimes convenient to introduce Young's moduus

. . . . . and Poisson’s number instead of the moduli of torsion and
9 'f‘g] ICvgurggéi\lnt?wl:ast\r,;%rskf;?ro??r(;fsl,?;t(aigifln:rlleerlaSttlg :acl)gsscompression. These quantities are simply related—in two di-
tic’ vit;rations of two-dimensional disks, and discugg the coI—Tens'Ons t\;]vet h?[VE:t(.4’L|K?{/(E+5M) and v=(K=u)/(K
lision between two identical disks or equivalently the colli- p)—so that alternatively to Ed5) we may use
sion of one disk with a rigid wall. The interaction is modeled
by a hard core potential depending on the instantaneous o=
separation between the two disks. In contrast to the one- (1-v7)
dimensional case, the equations of motion for the elastic vi- . o
brations have to be solved numerically. The main result of" the absence of body forces the equations of equilibrium
our paper is the coefficient of restitution as a function offead
initial relative velocity and elastic properties of the disks, as

[(1-v)ej+voije]. (6)

shown in Fig. 1. Collisions are found to be elastic for van- ﬂ: @)
ishing relative velocity in agreement with Hertz' quasistatic IX;

approacH 6], and become increasingly inelastic for increas-

ing relative velocity. For soft matter, characterized by a B. Normal modes

small value of the shear modulus, the elastic modes provide i i ,
a rather effective mechanism for the uptake of kinetic energy . !N the following we shall discuss the eigenmodes of a
during collision, so that the coefficient of restitution de- circular disc with force free boundari¢see also Ref.14]).

creases with decreasing shear modulus. In contrast to orfdUr Starting point are the linear equations of motjas)]

dimension, where the collision of two rods of equal length is o 2

always perfectly elasti¢10], we find that the collision be- Eu:=£V(V~u)+ 1- VAu: e(1-»9) (9_u

tween two identical disks is in general inelastic. 2 2 E a2’
Our paper is organized as follows. In Sec. Il we discuss

two-dimensional elasticity and calculate the eigenmodes of wherep is the mass per unit area. The differential operator

disk with force free boundaries. In Sec. Il we analyze theis Hermitian for force free boundary conditions, as shown in

equations of motion of an elastic disk, colliding with a hard the Appendix. To solve the coupled differential equations for

wall. The numerical solution of the equations of motion areu, andu,, we introduce the areal dilatatiopand rotationf

discussed in Sec. IV. In Sec. V we apply Hertz’ and Ray-

leigh’s methods to two dimensions to study the limiting case _duy & _ duy  duy

®

of very small relative velocities, i.e., the quasistatic limit. We =% T ey Tox ay” ©
conclude with a summary of our results and an outlook.
The equations of vibratiofB8) then simplify to
Il. ELASTIC EXTENSIONAL MODES OF DISKS an " )ag p(1—1?) %uy 19
Z ey ==" T X
A. Elasticity of planar bodies IX ay E at?

We briefly review the theory of linear elasticity in two
: : : J al  p(1—v?) #u
dimensions, as discussed, e.g., by L¢¥d], Landau and _’7+(1_V)_: P y (11)
Lifshitz [15] or Timoshenko and Goodi¢i3]. We consider ay Ix E at2 -’
small displacementa(x) and expand the free energy up to
quadratic order in the strain field, which is defined as theDifferentiating Eq.(10) with respect tox, Eq. (11) with re-
symmetrized derivative of the displacement vector: spect toy, and adding them yields
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, _ p(1-v?) é*n 7=Ak2J,(kr)COSN¢ CoSwt,
A 2¢=B,k'2J,(k'r)sinn¢ coswt,
Differentiating Eq.(10) with respect toy, Eq. (11) with re-

X ; whereJ, is Bessel's function of ordem [16], A, andB,, are
spect tox, and subtracting them gives

constants, and

2p(1+v) 9%¢ 1- 2(1
VzngE' (13) szw/%, Kr:m/%”)p. (18

Hence the equations of two-dimensional elasticity have beeftere is a second set of solutions with “cos” and “sin”

reduced to two scalar wave equations which are coupleghterchanged. We shall only consider situations which are
through the boundary conditions. . symmetric in¢, so thatu,(r,¢)=u,(r,— ¢) and uy(r,)
To discuss the eigenmodes of a circular disk, we use polar _ ug(r,— #). Hence we restrict ourselves to the above set.

coordinates and ¢, with the origin at the center of the disk. The displacements corresponding to the above solutions are
The two-dimensional displacement vector is writtenas given by

=Uu,g+U,g=U,&+Uyey. The radial and tangential dis-

placementss, andu, are given by dJ,(kr) Jn(k'r)
' ¢ u(r,¢)=|A, L( +nB, nl cosn¢ coswt,
U =U,COS¢p+UySiNg, Uyu=—U,SiNng+ Uy CoSep. r 19
Similarly strain, dilatation, and rotation can be worked out in _ Jn(kr) ddn(x'r)|
polar coordinates Ug(r,@)=—|nA, +B, ar sinn¢ coswt.
_ M U 1y _ My Uy L1 This can be easily verified by substituting E¢E9) into Egs.
o T agp’ oo rradg’ (15); thereby one recovers the symmetric solution of Eq.
17).
au, u 1duy At the boundary of the disk, and shear and compression
€rr= o €pp=7 T+ T od” (19 have to vanisho (R,$)=0 and o, 4(R,#)=0. Forn=0
andB=0 we have purely radial vibrations in which, van-
u, ugs 1au, ishes andu, is independent ofs. The boundary condition
2€r¢—7—T+F£- then reads
Finally, because the medium is isotropic the stress-strain re- dJ;(xR) " KJ (kR)=0 20
lation in polar coordinates is as simple as it is for Cartesian dR R

coordinategEq. (6)]: ) ) )
Areal dilatation and stress are maximal at the center of the
disk, although the center is not displaced. The displacement
Urr=p(€rr+ VEsy), vanishes along node lines, which are circlesrferO.
v There is a second set of solutions with=0,  u, inde-
pendent of¢p and node lines which are circles. These modes

O o= E (€pst ver), (16) are not excited in head-on collsions for which we impose the
1_

V2 symmetryu (1, ¢) = —Uy(r, — ¢).
In the general case, i.e., for=1, there is no tangential
E displacementu =0, for ¢=mk/n and no radial displace-
‘Tr¢:2(1+,,) €rg- ment,u,=0 for ¢=m(2k+1)/2n with ke {0, ..., —1}.
These values o represenn node lines for eitheu,, or u, .
The solutions to Eq912) and(13) are of the forms The boundary conditions in general imply two equations
|
1-v dJy(kR) , l1-v, 1dJ,(k'R) 1 )
~Anl TR T—’_ K —?n Jn(kR) | +nB,(1—v) ﬁT_EJn(K R)|=0, (22
oA 1 dJ,(kR) 1J 2l g 2o|Jn(K'R)+ ,, 2n? PN -
AR "drR Qn(K) "R dr | X ?n(’()_- (22

We eliminateA,, andB,, and use
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dJ.(kR) Jn(kR)
B—R:KJn,l(KR)—n . =

(23

to obtain the eigenvalue equation

(1= 1)2(1=n2) ki’ Iy 1 (kR Ip- 1 (k'R + (1= »)[ k2= (1= ) (L= n2)N][ kI 1(kRIn(k'R)+ & I 1(k'R) Ip( kR) ]

+[k*—=2(n%?+n)(1—v)k%]J,(kR)I (k' R)=0. (24)
|
For any fixed numben, there are infinitely many solu- dJd. (k1) Jn(khT)
tions w,, numbered by=0, ... . These solutions have RUM(r):= gy TNB—— |, (26)

been determined numerically. Sometimes solutions for
neighboringl’s are very closely spaced and difficult to find
numerically. It is then advantageous to simultaneously deter- Ru’(};'(r) =
mine the zeros of the derivative of E@4), which are much
more regularly spaced. In between a pair of zeros of the
derivative, we then search for a zero of the function.

The ratioA:B is determined by reinserting the values for
wp into Eq.(21). We are left with one free constant for each
eigenmode. This constant can be fixed by using normalizeg
eigenmodes, according to

Jn(k) 1) dJ.(kn 1
nAn,| n rn,I +Bn,| n(drn,l )

Zeros inu?"(r) and ug"(r) give rise to radial node lines
of u,(r,¢) anduy(r,¢). A given value ofl does not imply
a given number of radial node lines of the radial or tangential
isplacement, because the boundary conditions mix the two
isplacement components. The displacements for a few
eigenmodes are sketched in Fig. 2 and the frequeingje®f
the modes are plotted versus the number of radial nodes
o R Fig. 3. For collisions, an important characteristic of a mode
J dqbf dr r{[(u?"(r)cos{nzﬁ)]2 is the maximal radial and tangential displacement at the edge
0 0 of the disk

+[ug,l(r)sin(n¢)]2}=7-rR2_ (25 Coy=U™(R), Sn,::u’q‘;'(R). 27)

The modes can roughly be divided into two classes with
Here we have introduced dimensionless quantitif(r)  primarily radial or tangential displacement. In Fig. 3 radial
andul}'(r) for the radial variation of the displacemdiffg.  oscillations are characterized B,>S,,, tangential oscil-
19]. lations byC,, |<S,, .

For n>2 two distinct regimes can be distinguished. For
small | the solutions are regularly spaced and the arrange-
ment barely changes, when going from>n+ 1. The differ-
ence in magnitude between tangential and radial displace-
ment is small (e.g., C,,=S,,), and radial as well as
tangential modes tend to cluster, the more so the largeor
I>n the solutionsw,, for the radial and tangential modes

30
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FIG. 3. Dimensionless eigenfrequenciegR/c of an elastic
FIG. 2. Plot of the displacement of three simple eigenmodesdisk vs n(v=0.33). We distinguish radial and tangential oscilla-
The radii and circles of the originally undeformed disk assume theions, according to the dominant displacement at the edge of the
distorted shapes sketched here. disk.
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appear to be almost independent of each other, as they are il v y‘
the casen=0. This results in an irregular spacing of the -

frequencies of the modes. The distinction between primarily
radial and tangential displacement is pronounced. Ratios
C,,:S,, are typically larger than 1:1Qor 10:1) whenl

>n, exceeding 1:100 for very large When two solutions
have very similar frequencies the ratios are smaller at the
surface, but this does not change the overall character of the
mode. The number of node lines increases uniformly with |
in both cases. As a general statement we conclude that the
mixing of the displacements introduced by the boundary
conditions becomes more important with increasingnd
decreasind.

For n=1 dilatation, rotation, stress and shear disappear
linearily at the origin, but there is a finite displacement of the
center(see Fig. 2 Forn=2 displacement of the center dis-
appears like"1, dilatation and rotation like", and stress
and shear go like" 2 (and are maximal at the origin far X <
=2). Thus for increasing the deformations are increasing| per ) )
con)centrated toward thg edge of the disk. v Ek"‘_ifo d¢f0 drrfur(r.¢)+uy(r.4)] (32

The mode with the lowest frequency is the quadrupolar
mode h=2]=0), where contraction in one direction is met m .
by expansion in the orthogonal directiégsee Fig. 2 This =§2 Qﬁy,, (33
mode will turn out to be the most important mode for the nl

t f elasti , ted by Rayleigh for three- L : . .
Zicrzwrggseigngl asi)g;e?er[lggy as stiggested by Rayleigh for rego that the total energy of a vibrating disk not interacting

with external forces is given by

=y

FIG. 4. lllustration of the model of an elastic disk hitting a rigid
wall.

C. Energy of vibrations

o

We have a complete orthonormal system of eigenfunc- o , m
tions such that anysymmetrid state of the disk can be ex- H ::; om Pt 5 @0 Qn - (34)
panded in this set: '

Here we have introduced canonical momeﬁt{;\:QO.
In the elastic approximation a vibrating disk behaves like a
. (28)  set of independent harmonic oscillators with canonical loci

( ur<r,¢>) (u?"(r)cos{nqs)
= n,l
n,l

Jyei
ug(r. ) ug (r)sin(ng) Qn, and canonical momen,  , obeying Hamilton’s equa-
tion of motion

To express the elastic enerfy,sin terms of the expansion dQu  aH® Py

coefficients,Q,, we first use partial integration together T:K:W’

with force free boundary conditions to rewrite the elastic - (35
energy as P, GHO i

TTdt aq,,  memQn
E 2
Eeas™ — ———5- | 0% u()(Lu)(x).  (29) Ill. EQUATIONS OF MOTION IN THE PRESENCE
21=v7Js K OF A WALL

The head-on collision of two identical elastic disks is
Next, we use the equation for the eigenfunctionsCof equivalent to one elastic disk hitting a hard wall, which itself
is not deformed elastically. We choose a coordinate system
such that the wall is located at=0 (see Fig. 4, and the disk
(ﬁU”")k(X)=—Kﬁ|UE"(X), (30) is approaphing from the left. Thg interaction between disk
' and wall is modeled by a potentigd(x) =Vye**, wherex
=X(¢) is the distance between the edge of the deformed
disk and they axis. The choice oY/ is arbitrary, because it
only affects the position of the wall, as can be seen from the
Eelas:TE w2 ,Q2,. (31)  substitutionVoe™*=Voe®® (M9 with Vo=kvg. A hard
25T o core interaction is recovered in the limit—«~. We assume
that the disk is moving along theaxis in the positive direc-
The kinetic energy of a vibrating disk is given by tion. Its center of mass position is denotedxXyt).

to rewrite the elastic energy as
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We expand an arbitrary, symmetric state of the disk in
normal modes Ur(R,¢,t):; Qn,i(1)Cp,cosn g,

( ur<r,¢,t>) up(rycogng)
= t

Ut bt OV i sining)

with time dependent expansion coefficier@s (t). Since

the wall is only pushing against the edge of the disk, we need

to know the location of the boundary. The radial and tangenThe location (x(¢,t),y(¢,t)) of an element at(xq(t)
tial distortion at the edge are given by + R cos¢,Rsin ¢) without deformation, is then given by

(37)
> Q

n,l

), (36)
u¢<R,¢,t>=; Qn(1)S,,sinné.

(X(qﬁ,t)) 3 ( Xo(t) +[R+UH(R, ) Jcosp—uy(R, p)sing 39
y(¢,t) [R+U (R, ¢)]sing+uy(R, p)cosp
Its x component enters into the wall potential and is expressed in terms of normal modes as follows:
X(@,t):=Xy(t) +Rcosep+ 2 Qn,(t)(Cy cosng cosp—S, |sinng sing). (39
n,l
The total energy of an elastic disk interacting with a fixed wall is given by
1, o1 2 2 A2 ml2 ax(é,t)
H ::ﬁpo_FnE %Pn,l+mwn,lQn,l +V0 777/2d¢e L (40)
The dynamic evolution of the expansion coefficie@g(t) follows from Hamilton’s equations of motion:
dQ, dH
dt P,
dP,, dH
dt  dQn,
w2
=mwn',Qn,|+aVOJ d¢(C,, cosn¢g cosg— S, ;sinne sin ¢)e* (v, (41
—ml2

Instead of using real valued functio@, (t) and P, (t), we find it convenient to introduce a complex functigg,(t)
=qR,(t)+iqh,(t) such that

Qn.(t)=Re[dy, (He'“n!'],
Pn.i(t)=mapg,Im[ gy, (t)e'n]. (42)

Hamilton’s equations of motion then read

qm cof wp ) — qlnl sin(wn,t)=0,

‘R ) X aVO w2 . .
Uny SIN( @ 1t) + 0y, COLwp 1) = — j d¢(C, cosn¢g cosg— S, sinne sin g)e (@Y.

Mwn | J - 712

These two equations can be combined into a single equation The time evolution of the center of mass velocity also

for the complex functiorg, (t) follows from Hamilton’s equation of motion
dv 1dpg 1 9 aVg (2
d iaVo ) w2 — Y = — H=—— dd)eax(d),t),
— - _ e—lwn’ﬁJ d&(C. .cosnd cos dt m dt m &XO m J_np
3t901=" o, _d4(Cq cosngs cosg .

— S, sinng sin ¢)e®™(¢H, (43)  completing our description of a two-dimensional elastic disk
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FIG. 6. Logarithm of energyarbitrary unit$ in modes with low
(n,l) at closest approach. The spectrum is dominated by the qua-
FIG. 5. Time sequence of a disk with=0.2c hitting a rigid  drupolar mode =2, =0).
wall. The deformations remaining after the collision can be clearly

identified. collision accessible to numerical calculations, should be
o made infinitely hard.

hitting a wall. The only values needed for every model A harder potential of the wall increases the energy, which

are the frequency,, | and the maximal displacemen®, |  remains in the elastic modes for two reasofis: The force

andS, ;. The actual numerical integration of the equation of\ynich excites the elastic modes is strong@®. During the
evolution(4_3) requires the' consideration of many differe.nt collision less energy is stored in potential energy, which is
modes to find a good estimate of the coefficient of restituyetyrmed to kinetic energy after the collision and hence can-
tion. not be transferrred to the internal degrees of freedom. Rais-
ing the number of modes has the opposite effect. The coef-
IV. NUMERICAL RESULTS ficient of restitutione is closer to 1 for a larger number of
modes, because the larger number of modes allows a better
The actual integration of Eq43) is numerically demand-  adjustment of the shape of the disk, so that collisions become
ing, when high accuracy is required. Time steps have to b@ffectively “softer.” In both cases extrapolation from finite
set quite low to capture the oscillations of the fastest modes;gJyes is possible, it is more difficult for the number of
Numerical accuracy is limited by the number of modes thainodes than for the potential parameter
can be usedusually less than 1000so that a fourth order To select the right set of modes, we use the following
Runge-Kutta method suffices for the numerical integration ofyrocedure. For every initial velocity; the modes were
the equations of motion. Starting from(¢,t) andq,(t),  ranked according to their average energy content in a pre-
we updatex, according to Eq(44) and allqy, for a given  |iminary run. As expected, the average energy content of a
set (1=<Nmax,| <Ima) according to Eq.(43). Then a new mode decreases with increasing frequengy . It turns out
X(¢,t+At) is calculated from Eq(39). For a normal colli-  that the purely radial moddsee Eq.(20)] are particularly
sion of a disk with no excited modes the integration over thamportant. Typically 75% of the most significant modes have
edge of the circle can be limited to the upper quadrant ben=0. Another essential class of modes ha®. The impor-
cause of symmetry. We typically discretize the upper quadtance of these two classes can be inferred from Fig. 6, where
rant with 256 values fotp, and retrieve the values of cng

and simé from a look-up table to speed up the computation TABLE I. The ten most important modes ranked according to

efflectlwfely. In:ctfl_al_ co|nd|t|ons_areqn,|=h0 r:or ?}" n,I_, and_ 2 the average fraction of the total energy during collision fer
value ofxq sufficiently negative, such that there is no inter- =500R,;=0.1c using 1600 modes.

action with the wall.
In our simulations and plots we measure velocity in units gank
of c=E/p, distances in units oR, and forces in units of

>

Average energy Energy after collision

mc?/R=xmRE. The numerical simulations have been per- 1 2 0 0.1594843 0.0513636
formed for a range of initial velocities 0.005 v;<0.3 and 2 3 0 0.0480930 0.0234695
a value ofy=0.33 for Poisson’s ratio. A few additional runs 3 0 © 0.0231257 0.0089346
were made with other values ofto check the dependence of 4 4 0 0.0220028 0.0038760
our results on Poisson’s ratio. In Fig. 5 the collsion of an 5 0 1 0.0128242 0.0003144
elastic disk with a rigid wall is shown, as calculated numeri- 6 5 0 0.0114396 0.0027244
cally according to the above procedure. 7 1 1 0.0110218 0.0002610

Computation of the coefficient of restitution requires two 8 1 0 0.0066413 0.0002548
different extrapolations. Modelling disks as elastic continua 9 6 0 0.0059540 0.0021365
requires the limit of infinitely many modes. At the same time 19 0o 2 0.0048560 0.0000279

the artificial exponential potential, introduced to make the
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FIG. 7. Fraction of the energy stored in the elastic modes 1 )
— €2 after collision with a wall potential/=Vye®, extrapolated to
a—o. The different curvegfrom bottom to top correspond to FIG. 9. Visualization of the quasistatic approach.

different values of initial velocity: vilc
=0.005,0.01,0.02,0.04,0.06. . ,0.30. Forv;<0.1c only the three ) L i )
most significant data points were used to determine the regressidhfinitely many modes is shown in Fig. 8. The linNt— is

lines.N=940 modes were taken into account. approached like 3/N. The more violent collisions need a
S higher number of modes for the IN regime to appear.
we show the distribution of energy over modesl{ at clos- The two extrapolation procedures have been performed

est approach. In Table | we list the energy averaged over thgy a range of initial velocities and two values of Poisson’s
entire collision as well as the energy after collision for thenymber. The resulting coefficient of restitutienis plotted

ten most important modes. It can be seen that the averagfrsus the initial velocity in Fig. 1. It is seen to approach one
energy content of a mode during the collision can be veryn the quasielastic limit and to decrease with increasing rela-

different from the energy remaining in the oscillation after tive velocity. Collisions are found to be more inelastic for
the collision has been completed. higher values ofv.

In Fig. 7 the energy which is absorbed in the elastic
modes is plotted versus potential parameter It scales

nicely with 1/x, because the energy that is stored in the wall V. QUASISTATIC APPROACH
potential at closest approach is alsd/a. Hence the ex-
trapolationa—o is straightforward, except for a small ini- As we just have seen, the limiting casg/c<1 is diffi-

tial velocity, when the coefficient of restitution for a given cult to treat numerically. However Hertz’ law of contact can
potential parameter approaches 1. To identify the inelastic be extended to two dimensions. Solving the problem in two
signature of the collisions one has to choose ever hardelimensions is actually more complicated than the three-
potentials. This makes it difficult to extrapolate to the limit dimensional case, because there are no local solutions.
vi—0 numerically. Fortunately the quasistatic limit can be The quasistatic acceleration of a disk by a hard wall is
treated analytically, as discussed in Sec. V. equivalent to a disk in equilibrium in a gravitational field and

The extrapolation of the energy stored in vibrations tosupported by a hard wall. This problem was solved for a

point contact by Michel[17]. To compute the compression
0.35 . . . . . . . . caused by the gravitational field we have to generalize his
solution to an extended contact between the disk and the
supporting wall.

In Ref.[18] the contact pressure was calculated for a two-
dimensional contact of cylindrical bodies. This solution can
be taken over to our problem of a two-dimensional disk with
one-dimensional loading. Inside the loaded regiea<y
<a (see Fig. 9, a normal stresp(y) given by

0.3

2P
p(y)= E(az_yz)uz (45)

.0 n 1 n 1 1 1 1 n 1 n 1 n 1
00 001 0.02 003 0.04 005 0.06 0.07 0.08
1/2

I/IN

acts on the surface. HeReis the total loadR is the radius of
FIG. 8. Fraction of energy stored in vibrational modes extrapothe disk anda®=4PR/(7E). Integrating over the loaded
lated toN—2. The energy scales with \[N. For the regression region yields the stresses in the elastic disk due to the normal
lines N=300, 400, 600, and 940 were used. pressurep(y):
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—2x (a p(s)(y—s)2ds stress free edges, which can be guaranteed by adding a uni-

ow(Xy)= , form biaxial tensiono,,= o,,=pgR. Hence the total stress
" ™ J-a[(y—9)?+x7]? is given by
2x® ra p(s)ds 2R%x3
ouXy)=——| —————, (46) = -
8% ™ ) a[(y—s)?+x2]? Oyx=pa| x/2 (Cty)? )
2x% fa p(s)(y—s)ds 2y
Oxy= = | 2.1 212" oyw=—pg| (Xx—2R)2+ ——]. (52
T J-a[(y—s) +x7] vy (x2+y?)2
?Ic()jng the axis of symmetry integration is possible, and one The radial stress distributio(b0) from the point contact
inds (which creates a logarithmic divergence in the displaceent
op 24 032 will now be replaced by the realistic stress distributidi?)
T (X,0)= — — arex x), for an extended contact. The total stress along the axis of
i ma?\ (a%+x?)1? symmetryy=0 is then given by
2P P 2 X
—_ __ (a2 2\—1/2 — _ o
Tx(X,0)= = ——(@%+X) T, 0yy(x,0=0. (47) Txx(%,0)= w<—(a2+xz)m =il
In a three-dimensional elastic medium, the displacement 5 5 (53
decreases like f/for large distances from the loaded re- (X.0)= — Pl 2(a"+2x) 4_X+ x—2R
gion. In a two-dimensional elastic medium with one- Iy A= a%(a2+x)¥2 a2 2R?

dimensional loading, the displacement varies ag) 50 that

the displacement can only be defined relative to an arbitrarilyjere the total load is simply given = mg= 7R%pg.
chosen datuntwhich for three-dimensional systems is usu-  The strain can be calculated from the formula

ally taken at infinity. This implies that the total deformation

6 cannot be computed from the local stress distribution 1

p(y). To find the total compression for a two-dimensional € E (T voyy), (54)
system one has to consider the stress distribution in the bulk

of the two-dimensional elastic body as well as its shape and the total compressiafof the disk is found by integrat-

size. . .
. . ) ) in from x=0 tox=2R. Fora<R we find
To this end we need to generalize the solution of Michell g Exx

[17], who solved the problem of a heavy disk supported by a 2R P

point force. The stress generated by the gravitational force is o=— f €, dx=——[2In(4R/a)—1—v] (55
most easily evaluated in a coordinate system whose origin is 0 wE

located in the center of the sphere. The equations of equilib-

rium for a uniform downward force of magnituge read _P (4R7TE 1o
d d J d E ’ P i)
Oxx , 90xy _ Tyy , 99xy _ 2 _ (56)
r oy P9 Ty o =0, Vioytow=0
(49 The compressiod can also be obtained from the related
problem of a disk compressed between two walls, which was
and are solved by solved in Ref[19]. In this case the total deformation is twice
N N 1 the deformation as calculated above for snéll
T=2P9%  Oyy=—3pOX,  0yy=32pgy. (49 In Fig. 10 we showP(5) as computed by three different

The stress due to the point contact is purely radial in a coormethOdS' The analytical results are compared to the dynamic

dinate system whose origin lies in the point of contact: cglculatlons of Sec. IV. .If the disk is held fixed at a given
distance from the wall, it will assume a deformation which

cos¢ minimizes its total energy. This deformation and the force
op=—2pgRe——. (50 acting on the disk can be computed using the expansion of
r the elastic deformation by the modes calculated in Sec. Il
g’he total energy given by E¢40) with P, ;=0 is iteratively
minimized until convergence is achieved. The numerical re-
sult of this calculation is shown as a dashed-dotted line in
Fig. 10. The results from the quasistatic calculation and from
Txx=2pg(x—R), 0, =—31pg(x—R), 0x,=3pgy. the minimization procedure agree well for smajlwhereas
(51  for larger deformations one observes deviations from Hertz
law of contact. The forces during the dynamical collision are
and superimpose the two contributions to the stress. The reonsiderably higher than in the quasistatic limit, because the
sulting solution does not satisfy the boundary conditions ofcompression is localized. The results of the dynamic calcu-

To obtain the total stress distribution we transform the stres
due to gravitationi49) to the coordinate system whose origin
lies in the point of contact
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FIG. 10. Dimensionless force vs compression as calculated with Vi /C
different approaches. For the dynamic calculation we have used ) ) . )
a/R=500 and two values of the initial relative velocity; /c FIG. 11. Dimensionless contact timdR/c and rescaled maxi-

=0.1 and 0.04. The arrows indicate the direction of time. 1300mMal compressiondyax/R)(¢/v;) as calculated from the quasistatic

modes were used for the relaxation towards the minimal energy fofPProximation. The _result for compares well with data points
a given distance. (¢©) from the dynamical calculation.

lation are shown for two initial velocities to demonstrate theagree well with the numerical simulations of the full dy-
approach towards the quasistatic case for the smaller initidl@mic problem in the range of velocities where both methods
velocity. apply.
In the limit of smallP, Eq. (56) reads Our aim is an approximate expression for the coefficient
of restitutione in the limit of small velocitiew); . This can be

P 4RTE achieved by using the quasistatic force law in the equations
6= Eln p |’ (57) of motion. Our approach is a generalization of Rayleigh's
[12], who derived the energy stored in the fundamental mode
and may be inverted to yield in the case of spheres.
We replace the wall potential in E40) by a potentiaV,
owE 6Inin1/6 that acts only at the poiny=0 of the boundary. This
P= In(4R/9) +0 (Ino)? (58)  amounts to

To lowest nontrivial order the potential energy is given by |, :=%p§+; %Pﬁyﬁmwﬁ’,QﬁJ +V[x(¢=01)],
1 wE ’

T = (61)

V=329 naris) (59
where
The kinetic energy before collision is given By?7R?p. In
the limit of low v;, where the quasistatic approximation is P
: =0t)= +R+ _

expected to hold, conservation of energy can be used to ob- X(¢=00=x(1)+R ; Qni(Cny (62)
tain the maximum value of

From Hamilton’s equations of motion we derive

s ~viR | 4c
max= ¢ V ”U—i’ dP,,  dH

- at Fo i :mwn,IQn,I'*'Cn,Iﬁ_X- (63
n,
and hence
Next we approximate’V/ox by the forceP as calculated
E ﬂ from Eq.(56). Using the compact notatigd2), we can write
T Inv (60
i
. .. . d ia—iogt Cnvl
for the contact timer. In the limit v;—0 the contact time gilni=—le o | P(t), (64)
n,

diverges logarithmically, i.e., much slower than for three-
dimensional spheres, where Hertz’ theory predicts d 1
ocvi’l’S. In Fig. 11, contact time and maximal compression —v=——P(t), (65)
are plotted with the force calculated from E§6) as a func- dt m
tion of the initial velocities. The very slow divergence of the

contact time withv;— 0 can be observed. The results for the d

contact time as obtained from the quasistatic calculation dat’” v (66)
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0.06 — — . - - ing to a value ofv close to 1. For high initial velocities the
- energy in quadrupolar mode coefficent of restitution can be rather small, eeg=,0.65 for
0.05 - g v=0.9 andv;=0.%. In the quasistatic limitp;—0, colli-
sions become more and more elastic. We have generalized
0.04 - 1 the quasistatic approach of Hertz and Rayleigh to two dimen-
N I o sions, and shown that the contact timeliverges logarith-
003 7 mically asv;—0 and the maximum deformation vanishes as
02 Smax Vi 7. The dynamic approach agrees with the quasistatic
: theory in the regime, where both theories apply.
We expect the collisions to be more strongly inelastic, if
0.01 . . . )
the two spheres have different size. For one-dimensional
—————————————————————— - —= . N elastic rods we could show that the coefficient of restitution
0.0 5 5 Py S 3 2 i ; i
10 10 10 10 10 is strictly 1, if the two rods have equal length, no matter
vi/c whether vibrations are excited before collsion or not. In the
1

latter case, when no vibrations are excited, the coefficient of
FIG. 12. Fraction of energy stored in the lowest 1800 modes vgestitution is given by the ratio of lenghts of the two rods.
velocity using the Rayleigh approach. For these very low velocitie3Ne are presently extending our calculations to disks of dif-
the energy uptake is dominated by the quadrupolar mode2(  ferent radii. Future perspectives include collisions of elastic
=0). For comparison we show data points [ from the full dy-  gpheres as well as more elaborate models of contact, e.g.,
namic calculation. including roughness.

These equations can be integrated numerically with initial
conditionsg, =0, 6=0, andv=v;. The energy which re-

mains in the modes after collision is given by ACKNOWLEDGMENTS
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m
Hexzig wn,l|qn,l(7')|2- (67)

. . . APPENDIX
In Fig. 12 we show how much energy is stored in the

modes for lowv;. The quasistatic approximation agrees in In this appendix we show that the differential operafor
magnitude with the result from the dynamical calculation.as defined in Eq(8) is Hermitean with force free boundary
Most of the energy goes into the quadrupolar mode. Sinceonditions, which read

the quasistatic approach is only correct to first order, the

decreasing vibrational energy for>10" 2c is presumably

unphysical. [ou, U 1 uy)]
=|—++ R _— =
orr(R.¢) s Iy ip |l _q 0,
VI. CONCLUSIONS (A1)
It was our aim to derive the coefficient of restitution as a ) )
function of velocity, starting from a microscopic model of R &)= d 19 Uy _o
simple objects with internal degrees of freedom, which can org(R$)= (9_ur¢+F Eqﬁ_ T _R_

absorb part of the kinetic energy of translation. We have
discussed in detail the head-on collision of two elastic disks,
initially nonvibrating. This problem is equivalent to the col-
lision of an elastic disk with a rigid wall, representing the
plane of reflection symmetry of the two colliding disks.

The dynamics of a collision has been formulated with
help of Hamilton’s equations of motion for the normal coor-
dinates of the elastic disk, interacting with a repulsive wall
potential. The resulting dynamic equations were solved nu-
merically for a finite number of modes and then extrapolated
to the case of infinitely many modes.

The main results are the following. In contrast to the qua-
sistatic theory of Hertz, the dynamic collision of two identi-
cal elastic spheres is inelastic in the sense that the relative
velocity is decreased, corresponding to a coefficient of resti-
tution smaller than 1. The amount of translational energy o ] )
which is converted to vibrational energy depends on relative iS Hermitian, if the boundary terms vanish withand v
velocity and Poisson’s number. The conversion is more satisfying Eg.(Al). Using the normal vector along the
effective for materials with low shear modulus, correspond-boundary andis=r d ¢, the boundary terms read

For two arbitrary displacement fieldsandv, we have

1+v 1-v
fdx2v~<—V(V-u)+—Au)
s 2 2

1+v 1-v
zfdx2u~ ——V(V-v)+ ——Av
s 2 2

+ boundary terms. (A2)
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1+v A - 1-v ~ o
—f ds[(V~u)(r-v)—(V-v)(r-v)]+—f d{v(r-V)-u—u(r-V)-v] (A3)
2 EXS 2 S
_1+V 0-'Ur Ur 1 0U¢ aUr Uy 1 (9U¢ 1_Vf 0Ur O')U(b 0Ur 0U¢
=72 fﬁsdg[”r(ﬁﬁﬁﬁ) UF(W+T+FW T ] I8\ UGy e T U g tUe T
(A4)
B du, U, 1duy 1-v[ dv, 1dv, j v, v, lavy,
_fﬁgds[vrﬂ_r—'—vT F% 5 Urﬁ"‘u(ﬁFw ﬁSdS U,W'FV T-f-?w
1_1/ L7U¢+ 1(9U¢ A5
"2 Vg e g ) (45)

In Eq. (A5) we rearranged the terms for our purposes. The following relationships are derived using partial integration:
J‘Z’n’d &ur _ JZWd 5U¢ N o
. ¢U¢£— . ¢>Urw [vgUr ™
o ¢U¢ (9¢_ 0 ¢u¢(9¢ [u¢v¢]0 . ( )

In both equations, the boundary terms vanish becausedv are single valued functions @. The same relationships hold
with u andv interchanged. We use these and subtract a teg, /r from both integrals to finally write the boundary terms

as
au, u 1duy 1-v au, lauy uy
— 4y =+ = 2] |+ — -2
J;Sds(vr a T T ag 2 Y4 9s 1 ap 1
dv, v, lav, 1-v duy 1dvy vy
- — =+ = =2 |+ — - —2— 21 =0.
Lsds[ur ar V(r r do 2 Ys ap r dp 1 0 (A7)

Obviously, the left-hand side of EGA7) vanishes if the boundary conditiofsl) are fulfilled byu andv. Finally we observe
that £ is also Hermitian with respect to a fixed boundary=u,=0 andv,=v ,=0.
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